李连鸣

发布者:沈如达发布时间:2018-04-23浏览次数:25596

职称:教授、博导

办公室:无线谷2418房间

办公电话:

EmailLianming.Li@seu.edu.cn

个人简介:

李连鸣:

博士、教授、博士生导师、紫金山实验室课题负责人、3044am永利集团3044noc“通信芯片与微系统”研究生专业方向负责人。

3044am永利集团3044noc导师、“通信芯片与微系统”学硕及专硕方向导师;3044am永利集团3044noc微电子学院导师。

2001年本科毕业于3044am永利集团3044noc物理系,后保送至3044am永利集团3044noc无线电工程系攻读硕士学位。硕士毕业后留校任教。2006年赴集成电路领域世界一流的鲁汶大学MICAS(微电子及传感器)小组,跟随Michiel Steyaert教授(IEEE固态电路协会50年及60年来十大贡献者之一)Patrick Reynaert教授攻读博士学位。作为该组高频毫米波芯片方向的第一位博士生成员,从事CMOS毫米波电路设计,参与了欧盟多项重大项目的研究工作。现为3044am永利集团3044noc教授。

2011年回国至今,作为项目负责人及技术负责人,面向探测感知与通信应用,承担国家重点研发项目、国家重大专项、863重大课题、国家自然基金等重要纵横向项目30余项,在毫米波太赫兹关键电路、收发系统芯片、通信及雷达用时钟电路、高性能模拟电路、先进高密度高频封装、阵列天线等方面开展了深入研究。迄今,在IEEE 固态电路期刊(JSSC)、微波技术汇刊(T-MTT)、大规模电路汇刊(T-VLSI)、电路与系统汇刊(T-CAS)、传感器期刊( IEEE Sens. J.)、天线与传播汇刊(TAP)、太赫兹科学与技术汇刊(T-THz)、模块封装与制造汇刊(T-CPMT)、IEEE 固态电路会议(ISSCC)、微波会议(IMS)等电路、微波、天线及封装领域重要期刊与会议发表论文200余篇。

其所在团队,2011年从零开始,两年内完成了国内第一块基于CMOS工艺的毫米波射频收发系统,相关成果入选国家“十二五”科技创新成就展。

学习经历:

19979-20017   3044am永利集团3044noc     物理系         本科

20019-20043   3044am永利集团3044noc     无线电工程系   硕士研究生

20069-20115   比利时鲁汶大学 电子工程系     博士研究生

工作经历:

20044-20068   3044am永利集团3044noc     无线电工程系   助教

20069-20115   比利时鲁汶大学 电子工程系     助教

20115-至今      3044am永利集团3044noc    3044am永利集团3044noc  教师

教授课程及本科生指导:

1、电子电路基础--本科生主干必修课

2、模拟电子电路实验--本科生主干必修课

3、无线通信用模拟集成电路设计导论--本科生选修课

4、专用集成电路设计--本科生专业限选课

5、模拟电路设计与实现--硕士课程

6、射频与毫米波集成电路设计--硕士课程

7、面向电信系统应用的射频模块设计--硕士课程

指导本科生国家、省级SRTP科研创新项目12项,实物作品入选第11届全国大学生创新创业年会(当年3044am永利集团3044noc仅两项入选),获取IEEE 微波协会奖学金等奖项。

研究方向:

1、  射频、模拟集成电路与系统设计;

2、  混合信号、超大规模高速数字集成电路与系统设计;

3、 模拟、数字集成电路与系统协同设计;

4、 通信感知一体化集成电路设计;

5、 先进封装、天线芯片一体化微系统设计;

6通信感知一体化系统设计与实现。

欢迎品学兼优、富有追求、具有创新精神和科研能力强的同学攻读博士、硕士学位。欢迎优秀本科同学加入课题组参与科研训练。

电子邮箱:Lianming.Li@seu.edu.cn

部分期刊论文:

[1] X. Li, L. Li et al., "A 14.08 -Gb/s 256 -QAM 60 GHz Phased-Array Transceiver with Switchable Tertiary-Coil Transformer T/R Switch and Customizable-Sized Cascade Phase-Invariant VGAs," 2025 IEEE Custom Integrated Circuits Conference (CICC), 2025. 1-3.

[2] Q. Chen, L. Li et al., "A Compact Reconfigurable 24-29.5/38-43.5GHz Phased Array Transceiver Front-End with Self-Interference Rejection and Wideband IF Supporting TDD/FDD Operation," 2025 IEEE Custom Integrated Circuits Conference (CICC), 2025. 1-3.

[3] X. Wang, L. Li et al., "An 11-GHz Ultra-Fast Wideband FMCW Chirp Generator With 0.051% RMS Frequency Error Under 2.3-GHz Chirp Bandwidth and 2.3-GHz/μs Slope in 65-nm CMOS," in IEEE Journal of Solid-State Circuits, early accessed

[4] Z. Zhang, J. He, Q. Chen, X. Jiang, X. Fan and L. Li, "A DC-51.5 GHz Digital Step Attenuator With Sub-5 dB Insertion Loss and 3.1° RMS Phase Error," in IEEE Microwave and Wireless Technology Letters, 2025.6, 35(6):780-783. (入选IMS2025 Student Paper Competition Finalist Top10)

[5] Q. Chen, L. Li et al., "A Frequency Reconfigurable Transceiver Front-End With Enhanced Out-of-Band-Rejection and High Phase Resolution for 5G mm-Wave Phased Arrays," in IEEE Transactions on Microwave Theory and Techniques, early accessed

[6] J. Feng, L. Li et al., "A 57–71-GHz Beamforming Front-End With 6.6-dB NF and 13.9-dBm OP1 dB Using a Low-Loss Switchable Triple-Coil Transformer," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025.7, 33(7):2019-2023.

[7] D. Cheng, L. Li et al., "A 28/39 GHz Concurrent/Band-Switching LNA With Three-Winding Transformer and Common-Gate-Based Multiplexer Supporting Multistream and Multiband 5G FR2 Communication," in IEEE Transactions on Microwave Theory and Techniques, 2025.4, 73(4):1924-1937.

[8] Y. Liang, J. Feng, Q. Chen, X. Wu, X. Fan and L. Li, "A 225-GHz Coupled Harmonic Oscillator With −179 dBc/Hz FoM in 65-nm CMOS," in IEEE Transactions on Terahertz Science and Technology, 2025.3, 15(2):291-295.

[9] J. Feng, L. Li et al., "A Compact Low-Loss High-Reliability Antenna T/R Switch Embedded in Power Combiner for 60-GHz Fully Differential PA and LNA," in IEEE Microwave and Wireless Technology Letters, 2025.1, 35(1):39-42.

[10] L. Lu, L. Li et al., "Design of a 60-GHz Joint Radar–Communication Transceiver With a Highly Reused Architecture Utilizing Reconfigurable Dual-Mode Gilbert Cells," in IEEE Transactions on Microwave Theory and Techniques, 2025.1, 73(1):245-257. (入选IEEE T-MTT 期刊Featured Article)

[11] X. Wang, L. Li, X. You et al., "10.7 An 11GHz 2nd-order DPD FMCW Chirp Generator with 0.051% rms Frequency Error under a 2.3GHz Chirp Bandwidth, 2.3GHz/μs Slope, and 50ns Idle Time in 65nm CMOS," 2024 IEEE International Solid-State Circuits Conference (ISSCC), 2024. 200-202.

[12] Z. Liu, X. Wang, S. Ye, X. Wu, X. Fan and L. Li, "A 9.9-11.8 GHz CMOS Dual-Core Class-F23 VCO Achieving 190.4 dBc/Hz FoM With Inter-Core-Shaping," 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), 2024. 309-312.

[13] X. Jiang, Q. Chen, Y. Liang, L. Li and X. You, "A 0.013-mm240-67-GHz Voltage-Controlled Distributed Attenuator with 1.9-dB Insertion Loss and Sub-6.1° Insertion Phase Imbalance," 2024 IEEE/MTT-S International Microwave Symposium (IMS), 2024. 442-445.

[14] X. Li, D. Cheng, X. Jiang, D. Wang and L. Li, "A 57-71-GHz Accurate dB-Linear Variable Gain Power Amplifier with Ultralow Gain Error Using Particle Swarm Optimization Algorithm," 2024 IEEE/MTT-S International Microwave Symposium (IMS), 2024. 454-457.

[15] H. Duan, Q. Chen, X. Wu, D. Wang, L. Li and X. You, "A Multi-Band and High-IRR Down-Conversion Mixer for 5G NR FR2 Using Compact Transformer-Based Mutual-Image-Rejection Filter," 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2024. 323-326.

[16] D. Cheng, Q. Chen, J. Feng, X. Chen, X. Ma and L. Li, "A Compact 28/39 GHz Dual-Band Concurrent/Band-Switching LNA for 5G Multi-Band Multi-Stream Applications," 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2024. 315-318.

[17] Q. Chen, L. Li et al., "A Frequency Reconfigurable Phased-Array Front-End with Enhanced Image-Rejection and High-Resolution LO Phase Shifter for 5G FR2 n258/n260/n261 Bands," 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2024. 171-174.

[18] D. Cheng, X. Chen, Q. Chen, X. Ma and L. Li, "A Reconfigurable LNA With Compact Magnetic-Capacitive Coupling Transformer Networks for 5G 28-/39-GHz Applications," in IEEE Microwave and Wireless Technology Letters, 2024.7, 34(7):915-918.

[19] L. Lu, L. Li et al., "A 60-GHz Highly Reused Joint Radar-Communication Transceiver With Reconfigurable Dual-Mode Gilbert Cells in 65-nm CMOS," in IEEE Microwave and Wireless Technology Letters, 2024.6, 34(6):797-800. (入选IMS2024 Student Paper Competition Finalist Top10)

[20] X. Chen, L. Li et al., "A 37–43.5-GHz Fully Integrated 16-Element Phased-Array Transceiver With 64-QAM 7.2-Gb/s Data Rates Supporting Dual-Polarized MIMO," in IEEE Microwave and Wireless Technology Letters, 2024.6, 34(6):789-792. (入选IMS2024 Student Paper Competition Finalist Top10)

[21] Y. Liang, Q. Chen, X. Wu, X. Fan and L. Li, "A 226 GHz Coupled Harmonic VCO with 9.34% Tuning Range Utilizing Three-Coil Transformer with Switched Inductor in 65nm CMOS," 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), Haikou, China, 2023. 1-3.

[22] Y. Liang, Q. Chen, X. Zhang, X. Wu, X. Fan and L. Li, "A Compact 240 GHz Differential Fundamental Oscillator with -94.2dBc/Hz Phase Noise and 5.4% DC-to-RF Efficiency in 22nm FDSOI," ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC), 2023. 133-136.

[23] D. Cheng, L. Li et al., "A Ku-Band Broadband High-IF Receiver With Wide Input Dynamic Range in 65-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, 2024.9, 71(9):4186-4190.

[24] J. Feng, L. Li et al., "A 60-GHz Variable-Gain Power Amplifier With a Switchable Inductor for TDD Systems," in IEEE Microwave and Wireless Technology Letters, 2024.5, 34(5):512-515.

[25] X. Chen, L. Li et al., "A 60-GHz Phase-Invariant Variable Gain LNA With T/R Switch and Gain Interpolation Techniques in 65-nm CMOS," in IEEE Microwave and Wireless Technology Letters, 2024.5, 34(5):508-511.

[26] T. Zhang, L. Li et al., "A Miniaturized Vivaldi Antenna in Fan-Out Wafer-Level Package for 5G Millimeter- Wave Applications," in IEEE Antennas and Wireless Propagation Letters, 2024.6, 23(6):1914-1918.

[27] L. Lu, L. Li et al., "A Ka-Band Frequency Doubler With a Broadband Matching Scheme for Efficiency Optimization," in IEEE Microwave and Wireless Technology Letters, 2024.4, 24(4):435-438.

[28] Z. Liu, H. Xia, H. Liu, T. Zhang, X. Wu and L. Li, "Compact Scalable Gap Waveguide Phased Array Horn Antenna With an Efficient Decoupling Network," in IEEE Transactions on Antennas and Propagation, 2024.3, 72(4):3008-3016.

[29] H. Xia, L. Li et al., "A Cost-Effective Wideband Dual-Polarized L-Shaped Probe-Fed Phased Array Antenna for 60-GHz AiP Applications," in IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023.11, 13(11):1790-1803.

[30] T. Zhang, Z. Zhu, H. Xia, W. Xu, L. Li and T. J. Cui, "60-GHz Scalable LTCC Phased Array With Compact Symmetric Hybrid Feeding Network for Antenna-in-Package Application," in IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023.10, 13(10):1694-1702.

[31] Y. Wang, P. Reynaert, L. Li et al., "A 39-GHz High Image-Rejection Up-Conversion Mixer in 65-nm CMOS for 5G Communication," in IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.2, 70(2):491-495.

[32] L. Lu, X. Ma, Y. Liang, Z. Liu, X. Fan and L. Li, "A 60-GHz Hybrid FMCW-Doppler Radar for Vibration Detection With a Robust I/Q Calibration Method," in IEEE Sensors Journal, 2022.11, 22(21):20464-20474.

[33] X. Zhang, L. Li et al., "A 39-GHz Phase-Inverting Variable Gain Power Amplifier in 65-nm CMOS for 5G Communication," in IEEE Microwave and Wireless Components Letters, 2022.11, 32(11):1303-1306.

[34] Z. Liu, H. Xia, H. Liu, L. Li, Slow Wave Gap Waveguide With Bandpass Filtering Functionality, IEEE Microwave and Wireless Components Letters, 2022.8, 32(8).

[35] D. Cheng, X. Chen, Q. Chen, L. Li, B. Sheng, Design of an Ultra-Compact 60-GHz Bi-Directional Amplifier in 65-nm CMOS, IEEE Microwave and Wireless Components Letters, 2022.4, 32(4).

[36] X. Wu, L. He, L. Li, A High-Speed Complementary Current-Mode Gm-C Filter, IEICE Electronics Express, 2022. 3.

[37] L. Li, L. He, X. Wu, X. Niu, C. Wan, L. Kang, X. Jia, L. Zhang, Q. Zhao, X. Tu, Wideband cryogenic amplifier for a superconducting nanowire single-photon detector, Frontiers of Information Technology & Electronic Engineering, 2021.12, 22(12):1666-1676.

[38] T. Zhang, Z. Zhu, X. Ma, H. Xia, L. Li, T. J. Cui, A W -Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection, IEEE Transactions on Antennas and Propagation, 2021.6, 69(6):3234-3242.

[39] H. Xia, J. Hu, T. Zhang, L. Li, F. Zheng, Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process, Frontiers of Information Technology & Electronic Engineering, 2020.1, 21(1):174-181.

[40] X. Ma, Y. Wang, L. Lu, X. Zhang, Q. Chen, X. You, J. Lin, L. Li, Design of a 100-GHz Double-Sideband Low-IF CW Doppler Radar Transceiver for Micrometer Mechanical Vibration and Vital Sign Detection, IEEE Transactions on Microwave Theory and Techniques (T-MTT), 2020.7, 68(7):2876-2890.

[41] Y. Fu, L. Li, Y. Liao, X. Wang, Y., Shi, D. Wang, A 32-GHz Nested-PLL-Based FMCW Modulator With 2.16-GHz Bandwidth in a 65-nm CMOS Process, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020.7, 28(7):1600-1609.

[42] Y. Fu, L. Li, X. Wang, D. Wang, X. Wu, A 31.5-to-40.5 GHz Injection-locked CMOS Frequency Tripler with Injection-Current Enhancement Technique, IEICE ELECTRONICS EXPRESS, 2020.4, 17(7):1-5.

[43] X. Wu, L. He, L. Li, A High-Speed TIA Based Programmable Broadband Complex Filter, IEICE Electronics Express, 2019.12, 16(23).

[44] L. He, L. Li, X. Niu, H. Xia, M. Xie, X. Wu, L. Zhang, L. Kang, Z. Wang, A Low-Power, Inductorless Wideband Cryogenic Amplifier for Superconducting Nanowire Single Photon Detector. IEEE Transactions on Applied Superconductivity, 2019.9, 29(6):1-6.

[45] Y. Fu, L. Li, D. Wang, X. Wang, L. He, 28-GHz CMOS VCO With Capacitive Splitting and Transformer Feedback Techniques for 5G Communication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019.9, 27(9):2088-2095.

[46] J. Zhou, L. Men, C. Wan, P. Xiao, C. Jiang, X. Tu, X. Jia, K. Lin, L. Li, C. Jian, P. Wu,Low-Noise Readout Integrated Circuit for Terahertz Array Detector, IEEE Transactions ON Terahertz Science And Technology, 2018.5, 3:50-56.

[47] Y. Chai, L. Li, T. Cui, Design of a 60-GHz receiver front-end with broadband matching techniques in 65-nm CMOS, IEICE Electronics Express, 2018.12, 15(24).

[48] T. Zhang, L. Li, Z. Zhu, T. J. Cui, A Broadband Planar Balun Using Aperture-Coupled Microstrip-to-SIW Transition, IEEE Microwave and wireless components letters, 2019.8, 29(8):532-534.

[49] X. Ma, L. Li, S. Ming, X. You, J. Lin, Envelope Detection for an ADC-Relaxed Double-Sideband Low-IF CW Doppler Radar, IEEE Transactions on Microwave Theory & Techniques, 2018.12, 66(12):5833-5841.

[50] T. Zhang, L. Li, H. Xia, X. Ma, T. J. Cui, A Low-Cost and High-Gain 60-GHz Differential Phased Array Antenna in PCB Process, IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018.7,8(7):1281-1291.

[51] T. Zhang, L. Li, T. Cui, High-gain low-cost broadband 60 GHz differential integrated patch array antennas with wire-bonding packaging and on-board compensation network, IET Microwaves, Antennas & Propagation, 2017.6,11(7):971-975.

[52] L. Li, D. Wang, X. Niu, Y. Chai, L.i Chen, L. He, X. Wu, F. Zheng, T. Cui, X. You, mmWave communications for 5G: implementation challenges and advances, Science China-information sciences, 2018.1, 61(2):021301-1~021301-19.

[53] Y. Chai, X. Niu, L. He, L. Li, T. J. Cui, “A 60-GHz CMOS Broadband Receiver With Digital Calibration, 20-to-75-dB Gain, and 5-dB Noise Figure,” IEEE Transactions on Microwave Theory and Techniques, 2017.10, 65(10):3989-4001.

[54] T. Zhang, L. Li, M. Xie, H. Xia, X. Ma, T. J. Cui, Low-Cost Aperture-Coupled 60-GHz-Phased Array Antenna Package With Compact Matching Network, IEEE Transactions on Antennas and Propagation, 2017.12,65(12):6355-6362.

[55] L. Li, P. Reynaert, M. Steyaert, A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate–Drain Impedance-Balancing Techniques, IEEE Transactions on Microwave Theory and Techniques, 2011.2, 59(2):406-413.

[56] L. Li, P. Reynaert, M. Steyaert, Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank, IEEE Journal of Solid-State Circuits, 2009.7, 44(7):1950-1958.


部分科研项目:

项目名称

项目类别

工作类别

 

Tbps毫米波通信核心芯片与系统研发

国家重点研发项目

应用基础研究

项目负责人

基于R15支持毫米波的5G终端基带芯片和射频芯片工程样片研发

国家科技重大专项

应用基础研究

技术负责人

面向通信-雷达应用的可配置毫米波锁相环系统

国家自然科学基金项目

应用基础研究

项目负责人

CMOS太赫兹信号源相位噪声与输出功率提升理论与技术研究

国家自然科学基金项目

应用基础研究

项目负责人

60GHz 射频CMOS芯片与模块研制

863重大课题

应用基础研究

技术负责人

毫米波和太赫兹总体技术与高速基带信号处理技术研究

863重大课题

应用基础研究

技术负责人